3 research outputs found

    TRIP/NOPO E3 Ubiquitin Ligase Promotes Ubiquitylation of DNA Polymerase η

    Get PDF
    We previously identified a Drosophila maternal effect-lethal mutant named ‘no poles’ (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of the Y-family of DNA polymerases that facilitate replicative bypass of damaged DNA (translesion synthesis) as TRIP interactors. We show that TRIP and NOPO co-immunoprecipitate with human and Drosophila Polη, respectively, from cultured cells. We generated a null mutation in Drosophila Polη (dPolη) and found that dPolη-derived embryos have increased sensitivity to ultraviolet irradiation and exhibit nopo-like mitotic spindle defects. dPolη and nopo interact genetically in that overexpression of dPolηn hypomorphic nopo-derived embryos suppresses nopo phenotypes. We observed enhanced ubiquitylation of Polη by TRIP and NOPO E3 ligases in human cells and Drosophila embryos, respectively, and show that TRIP promotes hPolη localization to nuclear foci in human cells. We present a model in which TRIP/NOPO ubiquitylates Polη to positively regulate its activity in translesion synthesis

    Basement membrane ultrastructure and component localization data from uterine tissues during early mouse pregnancy

    No full text
    Basement membranes (BMs) are specialized extracellular scaffolds that provide architecture and modulate cell behaviors in tissues, such as fat, muscle, endothelium, endometrium, and decidua. Properties of BMs are maintained in homeostasis for most adult tissues. However, BM ultrastructure, composition, and localization are rapidly altered in select uterine tissues that are reprogrammed during pregnancy to enable early maternal-embryo interactions. Here, our data exhibit both static and dynamic BMs that were tracked in mouse uterine tissues during pre-, peri-, and postimplantation periods of pregnancy. The data exhibit spatial-temporal patterns of BM property regulation that coincide with the progression of adapted physiology. Further interpretation and discussion of these data in this article are described in the associated research article titled, “Embryo implantation triggers dynamic spatiotemporal expression of the basement membrane toolkit during uterine reprogramming” (C.R. Jones-Paris, S. Paria, T. Berg, J. Saus, G. Bhave, B.C. Paria, B.G. Hudson, 2016) [1]
    corecore